**Insulation**Great Britain Fifth Issue | 08/2022 # Thermaroof® TR24 Insulation for flat roofs waterproofed with partially bonded torch applied multi-layer bituminous waterproofing - High performance rigid thermoset insulation thermal conductivity 0.024 - 0.027 W/mK - Compatible with majority of torch applied waterproofing systems - Resistant to the passage of water vapour - Easy to handle and install - Ideal for new build and refurbishment - Non-deleterious material - Manufactured with a blowing agent that has zero ODP and low GWP ## Typical construction and U-values ### Assumptions The U-values in the tables that follow have been calculated using the method detailed in BS EN ISO 6946: 2017 (Building components and building elements. Thermal resistance and thermal transmittance. Calculation methods), and using the conventions set out in BR 443 (Conventions for U-value calculations). They are valid for the constructions shown in the details immediately above each table. These examples are based on Kingspan Thermaroof® TR24, waterproofed using partially bonded torch applied multi-layer bituminous waterproofing. The Thermaroof® TR24 insulation board is fully bonded to a sealed metal deck or alternatively a vapour control layer. These layers have themselves been fully bonded to the type of deck listed for each application. The ceiling, where applicable, is taken to be a 3 mm skim coated 12.5 mm plasterboard with a cavity between it and the underside of the deck. NB For the purposes of these calculations the standard of workmanship has been assumed good and therefore the correction factor for air gaps has been ignored. NB The figures quoted are for guidance only. A detailed U-value calculation together with condensation risk analysis should be completed for each individual project. NB If your construction is different from those specified and / or to gain a comprehensive U-value calculation along with a condensation risk analysis for your project please consult the Kingspan Insulation Technical Service Department for assistance (see rear cover). ### U-value table key Further information on the applicable notional and area weighted average limiting U-values is available in the relevant geographical documentation: - Approved Documents L to the Building Regulations for England; - Approved Documents L to the Building Regulations for Wales: - Technical Handbooks Section 6 to the Building Standards for Scotland; - Technical Booklets F1 & F2 to the Building Regulations for Northern Ireland; and - Technical Guidance Document L (Dwellings) and Technical Guidance Document L (Buildings other than Dwellings) to the Building Regulations for the Republic of Ireland. ### Concrete deck Dense concrete deck with suspended ceiling Figure 1 | Packer board*<br>thickness (mm) | Product thickness<br>of Kingspan<br>Thermaroof® TR24<br>(mm) | U-value<br>(W/m²K) | |---------------------------------|--------------------------------------------------------------|--------------------| | 0 | 80 | - | | 0 | 100 | 0.22 | | 0 | 120 | 0.18 | | 0 | 130 | 0.17 | | 0 | 140 | 0.16 | | 0 | 150 | 0.15 | | 80 | 80 | 0.14 | | 90 | 100 | 0.12 | | 100 | 120 | 0.11 | The packer board is taken to be Kingspan Thermaroof® TR27. Please refer to the relevant Kingspan Insulation literature for details of this product. $<sup>\</sup>ensuremath{\mathsf{NB}}$ Some values may have been omitted from the table because they do not meet the most common minimum requirements. NB Refer to local distributor or Kingspan Insulation price list for current stock and ## Typical construction and U-values ### Timber deck ### Timber deck with plasterboard ceiling Figure 2 | Packer board*<br>thickness (mm) | Product thickness<br>of Kingspan<br>Thermaroof® TR24<br>(mm) | U-value<br>(W/m²K) | |---------------------------------|--------------------------------------------------------------|--------------------| | 0 | 80 | - | | 0 | 100 | 0.22 | | 0 | 120 | 0.18 | | 0 | 130 | 0.17 | | 0 | 140 | 0.16 | | 0 | 150 | 0.15 | | 80 | 80 | 0.14 | | 90 | 100 | 0.12 | | 100 | 120 | 0.10 | <sup>\*</sup> The packer board is taken to be Kingspan Thermaroof® TR27. Please refer to the relevant Kingspan Insulation literature for details of this product. ### Metal deck ### Metal deck with no ceiling Figure 3 | Packer board*<br>thickness (mm) | Product thickness<br>of Kingspan<br>Thermaroof® TR24<br>(mm) | U-value<br>(W/m²K) | |---------------------------------|--------------------------------------------------------------|--------------------| | 0 | 80 | - | | 0 | 100 | 0.24 | | 0 | 120 | 0.20 | | 0 | 130 | 0.18 | | 0 | 140 | 0.17 | | 0 | 150 | 0.16 | | 80 | 80 | 0.15 | | 100 | 100 | 0.12 | | 110 | 120 | 0.10 | The packer board is taken to be Kingspan Thermaroof® TR27. Please refer to the relevant Kingspan Insulation literature for details of this product. NB Some values may have been omitted from the table because they do not meet the most common minimum requirements. NB Refer to local distributor or Kingspan Insulation price list for current stock and non-stock sizes. NB Some values may have been omitted from the table because they do not meet the most common minimum requirements. NB Refer to local distributor or Kingspan Insulation price list for current stock and non-stock sizes. ## Design considerations ### Linear thermal bridging ### Basic principles Linear thermal bridging describes the heat loss / gain that occurs at junctions between elements e.g. where an external wall meets the roof, or at junctions around openings in the building fabric where the thermal insulation layer is discontinuous e.g. sills, jambs and lintels. Interruptions within the insulation layer by materials with poorer insulating properties can result in a thermal bridge, which in turn can lead to problems of condensation and mould growth, especially if there is a drop in surface temperature. The heat flow at these junctions and opening locations, over and above that through the adjoining plane elements, is the linear thermal transmittance of the thermal bridge: measured in W/mK; referred to as a 'psi-value'; and expressed as a 'y-value'. The lower the $\psi$ -value, the better the performance. $\psi$ -values are taken into account in the calculation methodologies e.g. the Standard Assessment Procedure (SAP) that are used to assess the operational $\mathrm{CO}_2$ emissions and, where applicable, the fabric energy efficiency of buildings, primary energy or delivered energy rates. $\psi\text{-}\text{values}$ can comprise either, or a combination of, calculated and assumed values. ### Reducing linear thermal bridging Detailing at junctions to minimise the effects of thermal bridging and the associated risk of condensation or mould growth is important and there are some simple design considerations that can be adopted to help mitigate the risks and to reduce heat losses. - Care is required to ensure continuation of insulation wherever possible between the wall and roof for best thermal performance. Where this is not possible, the roof and wall insulation should be overlapped and ideally, insulation material introduced between. - Parapet detailing can represent a good, low heat loss approach, with insulation continuity maintained using an insulated upstand to reduce cold bridging. A minimum 30 mm thick Kingspan Thermaroof® TR24 upstand should be used around the perimeter of the roof on the internal façade of parapets. The upstand should extend a minimum of 150 mm above the roof insulation and achieve a minimum distance of 300 mm between the top of the insulation upstand and the bottom of the horizontal roof insulation. Wall insulation should be carried up into parapets at least as high as the flat roof insulation upstand. - Lightweight aggregate blockwork to the inner leaf of wall constructions can help to improve thermal performance at junctions generally and where used for the inner leaf of parapet walls it can help to reduce losses. - Where a parapet construction is not used, to achieve best performance, the roof insulation should be carried over the wall plate to meet and extend past the wall insulation layer. For a timber warm roof construction, the first joist zone above the wall plate can be filled with insulation for best performance and to maintain thermal continuity. - For best thermal performance, roof-lights and ventilator kerbs should be insulated with the same thickness of Kingspan Thermaroof® TR24 as the general roof area. - Where guttering is incorporated within a flat roof construction, this should be accounted for within the overall thermal design of the roof via an area-weighted calculation for the whole roof; the risk of localised interstitial condensation from reduced insulation provision at the gutter should be considered. ## Environmental impact & responsible sourcing ### **Environmental Product Declaration** An Environmental Product Declaration (EPD), certified by BRE Global to the BRE Environmental Profiles 2013 Product Category Rules for Type III environmental product declaration of construction products to BS EN 15804: 2012 +A2: 2019, has been created for Kingspan Thermaroof® TR24 produced at Kingspan Insulation's Pembridge, Herefordshire and Castleblayney, Co. Monaghan manufacturing facilities. ### Responsible sourcing Kingspan Thermaroof® TR24 produced at Kingspan Insulation's Pembridge, Herefordshire and Selby, North Yorkshire manufacturing facilities is certified to BES 6001 (Framework Standard for the Responsible Sourcing of Construction Products) 'Very Good'. NB The above information is correct at the time of writing. Please confirm at the point of need by visiting the Kingspan Insulation website (see rear cover), from which copies of Kinaspan Insulation's certificates can be obtained. ### Sustainability & responsibility Kingspan Insulation has a long-term commitment to sustainability and responsibility: as a manufacturer and supplier of insulation products; as an employer; as a substantial landholder; and as a key member of its neighbouring communities. A report covering the sustainability and responsibility of Kingspan Insulation Ltd's operations at its Pembridge, Herefordshire and Selby, North Yorkshire manufacturing facilities is available at www.kingspaninsulation.co.uk/sustainabilityandresponsibility. ## Design considerations ### Specification clause Kingspan Thermaroof® TR24 should be described in specifications as:- The roof insulation shall be Kingspan Thermaroof® TR24 \_\_\_\_mm thick: comprising a high performance fibre-free rigid thermoset insulation core faced with a bitumen coated glass tissue finished with a thermofusible polypropylene fleece on its upper surface and a mineralised glass tissue on its lower surface. The product shall be manufactured: with a blowing agent that has zero Ozone Depletion Potential (ODP) and low Global Warming Potential (GWP); in accordance with the requirements of BS EN 13165: 2012 + A2: 2016; under a management system certified to ISO 9001: 2015, ISO 14001: 2015, ISO 45001: 2018 and ISO 50001: 2018; by Kingspan Insulation Limited; and installed in accordance with the instructions issued by them. ### Product classifications #### Uniclass UK Pr\_25\_31\_28\_65 Polyisocyanurate (PIR) foam insulation Pr\_25\_71\_63\_66 Polyisocyanurate (PIR) foam board Pr\_80\_77\_76\_65 Polyisocyanurate (PIR) insulation #### CAWS J41 420 (Standard and Intermediate) J41 10 (Minor Works) Details also available at source.thenbs.com. ### Building Information Modelling (BIM) Kingspan Insulation's BIM objects can be downloaded in Revit and in IFC formats. For more information please visit www.kingspaninsulation.co.uk/bim. ### Wind loadings Wind loadings should be assessed in accordance with BS EN 1991-1-4: 2005 + A1: 2010 (National Annex to Eurocode 1 Actions on Structures. General Actions. Wind Actions) taking into account: - length / width / height of the building; - orientation of the building; - wind speed; aspect (e.g. on a hill side); and - topographical value of the surrounding area. ### **Falls** The fall on a flat roof, constructed using Kingspan Thermaroof® TR24, is normally provided by the supporting structure being directed towards the rainwater outlets. The fall should be smooth and steep enough to prevent the formation of rainwater pools. In order to ensure adequate drainage, BS 6229: 2018 (Flat roofs with continuously supported coverings. Code of practice) recommends uniform gradients of not less than 1 in 80. However, because of building settlement, it is advisable to design in even greater falls. These can be provided by a Kingspan Thermataper® tapered roofing system (see below). ### Tapered roofing Kingspan Thermaroof® TR24 is also available in a tapered version, Kingspan Thermataper® TT44, comprising a high performance fibre-free rigid thermoset insulation core, manufactured with a blowing agent that has zero Ozone Depletion Potential (ODP) and low Global Warming Potential (GWP), faced on the underside with a mineralised glass tissue autohesively bonded to the insulation core during manufacture. The top surface is finished with a bitumen coated glass tissue finished with a thermofusible polypropylene fleece. Kingspan Thermataper® TT44 comes with a supporting design service. This ensures that the most cost-effective solution for a roof is identified and that the end result is a tapered system design which meets a roof's rainwater run-off and insulation requirements. Further details of Kingspan Thermataper® TT44 are available from the Kingspan Insulation Tapered Roofing Department (see rear cover), which should be consulted as early as possible in the process of designing a roof. ### Roof waterproofing Kingspan Thermaroof® TR24 is designed for use in conjunction with most partially bonded torch applied multi-layer bituminous waterproofing. When applying waterproofing, torch with minimum heat at all times. Torch the roll of waterproofing felt using flame/edge guards at all times. Do not directly apply the torch to the insulation facing. The waterproofing membrane should be installed in accordance with the membrane manufacturer's instruction. For further advice please contact the Kingspan Insulation Technical Service Department (see rear cover). ## Design considerations ### Water vapour control Kingspan Thermaroof® TR24 should be installed over a separate vapour control layer, in new build roofs, unless it is being used in conjunction with a sealed metal deck. Regardless of the deck type it is recommended that a condensation risk analysis is carried out for every project. For refurbishment projects, involving the addition of insulation to existing insulated flat roofs, or roofs constructed of insulated steel faced composite panels, it is imperative that a U-value calculation and condensation risk analysis is carried out for every project, in order to ensure that the correct thickness of insulation is installed to achieve the required thermal performance, whilst avoiding interstitial condensation. In refurbishment projects, where Kingspan Thermaroof® TR24 is to be installed over an existing bituminous waterproofing membrane, the membrane can be used as a vapour control layer, as long as it is in a good water-tight condition. Where this is not the case, a separate vapour control layer should be installed. The type of separate vapour control layer required will be dependent upon the chosen method of fixing the insulation boards. For mechanically fixed applications, a minimum vapour control layer should consist of a 1000 gauge (250 micron) polythene sheet, with all joints lapped and then sealed with double-sided self adhesive tape. For applications where the insulation boards are to be bonded to the vapour control layer, a minimum vapour control layer should consist of a coated roofing felt complying with Type 3B to BS EN 13707: 2013 (Flexible sheets for waterproofing. Reinforced bitumen sheets for roof waterproofing. Definitions and characteristics), or S1P1 to BS 8747: 2007 (Reinforced bitumen membranes (RBMs) for roofing. Guide to selection and specification), or any appropriate metal-cored vapour control layer. Where the separate vapour control layer is to be bonded, allowance should be made for adequate bonding of the vapour control layer to the substrate, so as to provide a suitable surface upon which to lay the insulation boards and sufficient resistance to wind up-lift (see 'Wind Loading'). ### Roof loading / traffic Kingspan Thermaroof® TR24 is suitable for use on access roof decks subject to limited foot traffic. Where inappropriate foot traffic is liable to occur, it is recommended that the roof surface is protected by promenade tiles. For further advice on the acceptability of specific foot traffic regimes, please contact the Kingspan Insulation Technical Service Department. ### Sitework ### Installing over metal decks - Metal decks should be clean, dry, without large projections, steps or gaps, and should be graded to allow correct falls to all rainwater outlets. - If using a sealed metal deck there is no requirement for a separate vapour control layer. - If the metal deck is not sealed, and the insulation boards are to be bonded down, in order to ensure an adequate bond between the metal deck and the vapour control layer, the metal deck should be suitably primed, in accordance with the primer manufacturer's instructions, prior to the application of the hot bitumen, or suitable alternative proprietary adhesive system, used to bond the vapour control layer to the deck. - If the metal deck is not sealed, and the insulation boards are to be mechanically fixed, the vapour control layer should be loose-laid - Where one run of the specified vapour control layer laps another, there should be minimum 150 mm side and end overlaps, which should be adequately sealed. - Turn up the vapour control layer at the edge of the roof to a height appropriate to the specified waterproofing membrane. - Boards of Kingspan Thermaroof® TR24 should be secured to the deck using mechanical fixings e.g. telescopic tube fasteners (see 'Mechanical fixings'). - Alternatively, the insulation boards should be bonded down by laying into hot bitumen (max. temperature 240°C) mopped or poured over the vapour control layer / sealed metal deck, or with the use of a suitable alternative proprietary adhesive system. - Insulation boards should always be laid break-bonded, either with their long edges at right angles to the trough openings, or diagonally across the corrugation line, and with joints lightly butted. There should be no gaps at abutments. - Roof-light or ventilator kerbs etc. should always be insulated with the same thickness of Kingspan Thermaroof® TR24 as the roof area. - A 30 mm thick Kingspan Thermaroof® TR24 upstand should be used around the perimeter of the roof on the internal façade of parapets. - A minimum distance of 300 mm should be maintained between the top of the insulation upstand and the bottom of the horizontal roof insulation. - The waterproofing membrane is installed in accordance with the membrane manufacturer's instructions, over the whole insulated area including any insulation upstands, as soon as possible after laying the insulation boards. ### Installing over concrete decks - Concrete decks should be clean, dry, without large projections, steps or gaps, and should be graded to allow correct falls to all rainwater outlets - If the insulation boards are to be bonded down, in order to ensure an adequate bond between the vapour control layer and the concrete deck, the concrete or screeded surface should be suitably primed, in accordance with the primer manufacturer's instructions, prior to the application of the hot bitumen, or suitable alternative proprietary adhesive system, used to bond the vapour control layer to the deck. - If the insulation boards are to be mechanically fixed, the vapour control layer should be loose-laid. - Where one run of the specified vapour control layer laps another, there should be minimum 150 mm side and end overlaps, which should be adequately sealed. - Turn up the vapour control layer at the edge of the roof to a height appropriate to the specified waterproofing membrane. - Boards of Kingspan Thermaroof® TR24 should be bonded down by laying into hot bitumen (max. temperature 240°C) mopped or poured over the vapour control layer, or with the use of a suitable alternative proprietary adhesive system. - Alternatively, the insulation boards should be secured to the deck using mechanical fixings e.g. telescopic tube fasteners (see 'Mechanical fixings'). - Insulation boards should always be laid break-bonded, either with their long edges at right angles to the edge of, or diagonally across the roof, and with joints lightly butted. There should be no gaps at abutments. - Roof-light or ventilator kerbs etc. should always be insulated with the same thickness of Kingspan Thermaroof® TR24 as the general roof area. - A 30 mm thick Kingspan Thermaroof® TR24 upstand should be used around the perimeter of the roof on the internal façade of parapets. - A minimum distance of 300 mm should be maintained between the top of the insulation upstand and the bottom of the horizontal roof insulation. - The waterproofing membrane is installed in accordance with the membrane manufacturer's instructions, over the whole insulated area including any insulation upstands, as soon as possible after laying the insulation boards. ### Sitework ### Installing over existing flat roofs - The existing waterproofing membrane surface should be clean, dry, without large projections, steps or gaps, and should be graded to allow correct falls to all rainwater outlets - Where the existing waterproofing membrane is not fit for purpose as a vapour control layer, and the new insulation boards are to be bonded down, a separate vapour control layer should be bonded to it with hot bitumen, or suitable alternative proprietary adhesive system. If the insulation boards are to be mechanically fixed, the vapour control layer should be loose-laid. - Where one run of the specified vapour control layer laps another, there should be minimum 150 mm side and end overlaps, which should be adequately sealed. - Turn up the vapour control layer at the edge of the roof to a height appropriate to the specified new waterproofing membrane. - Boards of Kingspan Thermaroof® TR24 should be bonded down by laying into hot bitumen (max. temperature 240°C) mopped or poured over the vapour control layer, or with the use of a suitable alternative proprietary adhesive system. - Alternatively, the insulation boards should be secured to the deck using mechanical fixings e.g. telescopic tube fasteners (see 'Mechanical Fixings'). - Insulation boards should always be laid break-bonded, either with their long edges at right angles to the edge of, or diagonally across the roof, and with joints lightly butted. There should be no gaps at abutments. - Roof-light or ventilator kerbs etc. should always insulated with the same thickness of Kingspan Thermaroof® TR24 as the general roof area. - A 30 mm thick Kingspan Thermaroof® TR24 upstand should be used around the perimeter of the roof on the internal façade of parapets. - A minimum distance of 300 mm should be maintained between the top of the insulation upstand and the bottom of the horizontal roof insulation. - The waterproofing membrane is installed in accordance with the membrane manufacturer's instructions, over the whole insulated area including any insulation upstands, as soon as possible after laying the insulation boards. ### Mechanical fixings - The number of mechanical fixings required to fix Kingspan Thermaroof® TR24 will vary with the geographical location of the building, the local topography, and the height and width of the roof concerned along with the deck type. - A minimum of 4 fixings are required to secure 1.2 x 0.6 m boards of Kingspan Thermaroof® TR24 to the deck. - The requirement for additional fixings should be assessed in accordance with BS EN 1991–1.4: 2005 + A1: 2010 (National Annex to Eurocode 1. Actions on structures, General Actions, Wind Actions). - Mechanical fixings must be arranged in an even pattern. - Fasteners at insulation board edges must be located > 50 and < 150 mm from edges and corners of the board and not overlap board joints. - Please refer to page 10 for recommended fixing patterns. - Each fixing should incorporate a square or circular plate washer (min. 50 x 50 mm or 50 mm diameter). - If two layers of insulation are to be installed, the base layer should be mechanically fixed with minimum 1 No. fixing in the centre of the insulation board before fixing the top layer as described above. - Where alternative mechanical fixing systems are specified, such as bar fixing systems, the specified system must give similar restraint to the insulation board as would be attained by the use of conventional telescopic tube fasteners. ### Installing in two layers - In situations where two layers of insulation are required, both layers should be installed in the same manner, as detailed in the preceding sections. However, if mechanical fixing methods are to be employed, refer to 'Mechanical Fixings' for guidance on the number of fixings to be used in each layer. - In all cases, the layers should be horizontally offset relative to each other so that, as far as possible, the board joints in the two adjacent layers do not coincide with each other (see Figure 4). Figure 4 ### Sitework ### General ### Following trades The roof must be adequately protected when building works are being carried out on or over the roof surface. This is best achieved by close boarding. The completed roof must not be used for the direct storage of heavy building components such as bricks or air conditioning equipment. ### Daily working practice At the completion of each day's work, or whenever work is interrupted for extended periods of time, a night joint must be made in order to prevent water penetration into the roof construction. ### Cutting - Cutting should be carried out either by using a fine toothed saw or by scoring with a sharp knife, snapping the board over a straight edge and then cutting the facing on the other side. - Ensure accurate trimming to achieve close-butting joints and continuity of insulation. ### Availability Kingspan Thermaroof® TR24 is available through specialist insulation distributors and selected roofing merchants throughout the UK. ### Packaging and storage - The polyethylene polythene packaging of Kingspan Insulation products, which is recyclable, should not be considered adequate for outdoor protection. - Ideally, boards should be stored inside a building. If, however, outside storage cannot be avoided, then the boards should be stacked clear of the ground and covered with an opaque polythene sheet or weatherproof tarpaulin. Boards that have been allowed to get wet should not be used. ### Health and Safety - Kingspan Insulation products are chemically inert and safe to use. - A Safety Information Data Sheet for this product is available from the Kingspan Insulation website www.kingspaninsulation.co.uk/safety. Warning - do not stand on or otherwise support your weight on this product unless it is fully supported by a load bearing surface. ## Mechanical fixing patterns ### Recommended fixing patterns Alternatively, the insulation boards should be secured to the deck using mechanical fixings. The recommended fixing patterns for Kingspan Thermaroof® TR24 are shown below. The number of fixings necessary should also be assessed in accordance with BS EN 1991-1-4: 2005 + A1: 2010 (National Annex to Eurocode 1. Actions on structures, General Actions, Wind Actions). The images below show the minimum recommended fixing patterns, the number of fixings used and the resulting fixing density (number of fixings per m²). $\,$ 4 No. per board (1.2 x 0.6 m board - 5.55 fixings / $m^2)$ 5 No. per board (1.2 x 0.6 m board - 6.94 fixings / m²) 6 No. per board (1.2 x 0.6 m board - 8.33 fixings / m²) 7 No. per board (1.2 x 0.6 m board - 9.72 fixings / m²) 8 No. per board (1.2 x 0.6 m board - 11.11 fixings / m²) 9 No. per board (1.2 x 0.6 m board - 12.50 fixings / m²) 10 No. per board (1.2 x 0.6 m board - 13.88 fixings / $m^2$ ) 11 No. per board (1.2 x 0.6 m board - 15.27 fixings / m²) 12 No. per board (1.2 x 0.6 m board - 16.66 fixings / m²) 13 No. per board (1.2 x 0.6 m board - 18.05 fixings / $m^2$ ) $\,$ 14 No. per board (1.2 x 0.6 m board - 19.44 fixings / $m^2)$ $\,$ 15 No. per board (1.2 x 0.6 m board - 20.83 fixings / $m^2)$ ### Product details ### The upper facing The upper facing of Kingspan Thermaroof® TR24 is bitumen coated glass tissue finished with a thermofusible polypropylene fleece, autohesively bonded to the insulation core during manufacture. #### The core The core of Kingspan Thermaroof® TR24 is manufactured with Nilflam® technology, a high performance fibre-free rigid thermoset polyisocyanurate (PIR) insulant manufactured with a blowing agent that has zero Ozone Depletion Potential (ODP) and low Global Warming Potential (GWP). ### The lower facing The lower facing of Kingspan Thermaroof® TR24 is a mineralised glass tissue autohesively bonded to the insulation core during manufacture. ### Standards & approvals Kingspan Thermaroof® TR24 is manufactured to the highest standards under a management system certified to ISO 9001: 2015 (Quality Management System), ISO 14001: 2015 (Environmental Management System), ISO 45001: 2018 (Occupational Health and Safety Management System) and ISO 50001: 2018 (Energy Management System). ### Standard dimensions Kingspan Thermaroof® TR24 is available in the following standard size: | Nominal dimension | | Availability | | |--------------------|------|----------------------------------------------------------------------------------------------------------|--| | Length | (m) | 1.2 | | | Width | (m) | 0.6 | | | Insulant Thickness | (mm) | Refer to local distributor or Kingspan<br>Insulation price list for current stock<br>and non-stock sizes | | ### Compressive strength The compressive strength of Kingspan Thermaroof® TR24 typically exceeds 150 kPa at 10% compression, when tested to BS EN 826: 2013 (Thermal insulating products for building applications. Determination of compression behaviour). ### Water vapour resistivity The product typically achieves a resistivity greater than 300 MNs/gm, when tested in accordance with BS EN 12086: 2013 (Thermal insulating products for building applications. Determination of water vapour transmission properties). Kingspan Thermaroof® TR24 should always be installed over a vapour control layer or sealed metal deck (see 'Water Vapour Control' on page 5). ### Durability If correctly installed, Kingspan Thermaroof® TR24 can have an indefinite life. Its durability depends on the supporting structure and the conditions of its use. ### Resistance to solvents, fungi & rodents The insulation core is resistant to short-term contact with petrol and with most dilute acids, alkalis and mineral oils. However, it is recommended that any spills be cleaned off fully before the boards are installed. Ensure that safe methods of cleaning are used, as recommended by suppliers of the spilt liquid. The insulation core is not resistant to some solvent based adhesive systems, particularly those containing methyl ethyl ketone. Adhesives containing such solvents should not be used in association with this product. Damaged boards or boards that have been in contact with harsh solvents or acids should not be used. The insulation core and facings used in the manufacture of Kingspan Thermaroof® TR24 resist attack by mould and microbial growth and do not provide any food value to vermin. ## Product details ### Fire performance For guidance regarding the routes to compliance for meeting the Building Regulations / Standards, refer to the relevant Technical Bulletins and links to Government websites at www.kingspaninsulation.co.uk/fireregulations. Under System 4 AVCP, Kingspan Thermaroof® TR24 has a Euroclass rating of F. There can be materials placed above the insulation layer within a roofing system including, but not limited to, waterproofing materials, reinforcement layers, primers and carrier membranes. These additional materials complete the roofing system. As such, the fire performance of a roofing system is predominantly determined by these finishes. Compliance for meeting the fire safety requirements of the Building Regulations / Standards can be evaluated by testing the fire performance of the roofing system. The most commonly used route to compliance involves testing the full roofing system and uses test method DD CEN/TS 1187: 2012 (Test methods for external fire exposure to roofs). External roof exposure testing is typically carried out by the waterproofing manufacturer / system supplier, due to the complexities of the roofing system outlined above. NB Test evidence to demonstrate compliance with the fire safety requirements of the Building Regulations / Standards incorporating the Kingspan Thermaroof® TR24 within a roof system would be required to be provided from the chosen waterproofing system supplier. Without the required classification for the proposed roof system, achieved through either an external roof exposure test or an overlay of inorganic material, the use of Kingspan Thermaroof® TR24 must be restricted to at least 20 metres in England and 24 metres in Scotland, or more from any point of the relevant boundary. Further details on the fire performance of Kingspan Insulation products may be obtained from the Kingspan Insulation Technical Service Department (see rear cover). ### Thermal properties The λ-values and R-values detailed below are quoted in accordance with BS EN 13165: 2012 + A2: 2016 (Thermal insulation products for buildings. Factory made rigid polyurethane foam (PU) products. Specification). ### Thermal conductivity The boards achieve a thermal conductivity (λ-value) of: 0.027 W/mK (insulant thickness < 80mm) 0.025 W/mK (insulant thickness 80 - 119 mm) 0.024 W/mK (insulant thickness ≥ 120 mm) #### Thermal resistance Thermal resistance (R-value) varies with thickness and is calculated by dividing the thickness of the board (expressed in metres) by its thermal conductivity. The resulting number is rounded down to the nearest 0.05 (m²K/W). | Product thickness<br>(mm) | Thermal resistance<br>(m²K/W) | |---------------------------|-------------------------------| | 30 | 1.10 | | 50 | 1.85 | | 80 | 3.20 | | 100 | 4.00 | | 120 | 5.00 | | 130 | 5.40 | | 140 | 5.80 | | 150 | 6.25 | | | | NB Refer to local distributor or Kingspan Insulation price list for current stock and non-stock sizes. ## About Kingspan Insulation ### Company details Kingspan Insulation Ltd is part of the Kingspan Group plc., one of Europe's leading construction product manufacturers. The Kingspan Group was formed in the late 1960s and is a publicly quoted group of companies headquartered in Kingscourt, County Cavan, Ireland. Kingspan Insulation Ltd is a market leading manufacturer of premium and high performance rigid insulation products and insulated systems for building fabric and building services applications. ### **Products & solutions** Optimum, premium and high performance rigid insulation products for building fabric applications, including roofs, walls and floors. - Kingspan OPTIM-R® optimum performance vacuum insulation panel (VIP) systems. - Kingspan Kooltherm® premium performance phenolic insulation - Kingspan Therma<sup>™</sup> high performance PIR insulation. - K-Roc® rock mineral fibre insulation. - Kingspan GreenGuard® extruded polystyrene insulation (XPS). - $\blacksquare$ Kingspan TEK $^{\otimes}$ structural insulated panels (SIPs). - Cavity closers PVC-U extrusions with an insulation core. - Membranes for pitched roofs and walls. ### Services We are proud to offer one of the most advanced support services in the construction industry, designed to give fast and accurate advice no matter what your role is. Visit our website to access the following services. - U-value calculations free, quick and easy U-value calculations with our U-value Calculator. - Help and advice on your projects, including stockists, how to guides, regulatory guidance and e-learning. - Building Information Modelling (BIM) download BIM objects for our products. - Tapered roofing service Kingspan Insulation's tapered roofing systems come with a supporting design service to ensure the most cost-effective solution for a roof is identified. - CPDs Kingspan Insulation offer a number of free CPD seminars for architects and specifiers covering a wide range of industry topics. CPDs can be booked or a range of online learning courses can be found online. ### Planet Passionate Planet Passionate is our 10-year group wide global sustainability strategy aims to impact on three big global issues: climate change, circularity and protection of our natural world. The Planet Passionate strategy is made up of 12 ambitious targets, addressing the impact of Kingspan's business operations and manufacturing on the four key areas of energy, carbon, circularity and water, with commitments by 2030 to include: - energy: powering 60% of all Kingspan operations directly from renewable energy with a minimum of 20% of this energy generated on manufacturing sites; - carbon: achieving net zero carbon manufacturing and a 50% reduction in product CO<sub>2</sub> intensity from primary supply partners; - circularity: upcycling of 1 billion PET bottles per annum into insulation products plus zero company waste to landfill across all sites; and - water: harvesting 100 million litres of Kingspan's water usage from rainwater. ### Contact details #### Great Britain Kingspan Insulation Ltd Pembridge | Leominster Herefordshire | HR6 9LA T: +44 (0) 1544 388 601 F: +44 (0) 1544 388 888 E: info@kingspaninsulation.co.uk www.kingspaninsulation.co.uk For individual department contact details please visit www.kingspaninsulation.co.uk/contact ### FLOORINGWAREHOUSEDIRECT.CO.UK ENQUIRIES@FLOORINGWAREHOUSEDIRECT.CO.UK 01484 411 888 To check that you have the latest version of this brochure please visit www.kingspaninsulation.co.uk/downloads. To access pre-existing product information or information relating to previously sold/discontinued products please email literature@kingspaninsulation.co.uk. The information contained in this brochure is believed to be correct at the date of publication. Kingspan Insulation Limited ("Kingspan Insulation") reserves the right to alter or amend the product specifications without notice due to continuous improvement commitments. There may also be relevant changes between publications with regard to legislation, or other developments affecting the accuracy of the information contained in this brochure. Product thicknesses shown in this document should not be taken as being available ex-stock and reference should be made to the current Kingspan Insulation price-list or advice sought from Kingspan Insulation's Customer Service Department. The information, technical details and fixing instructions etc. included in this literature are given in good faith and apply to uses described. Kingspan Insulation does not accept responsibility for issues arising from using products in applications different from those described within this brochure or failure to correctly follow the information or instructions as described within this brochure. Recommendations for use should be verified with a suitable expert or professional for suitability and compliance with actual requirements, specifications and any applicable laws and regulations. For other applications or conditions of use, Kingspan Insulation offers a technical advisory service (see above for contact details), the advice of which should be sought for uses of Kingspan Insulation products that are not specifically described herein. Please check that your copy of this literature is current by contacting the Kingspan Insulation Marketing Department. ® Kingspan, Kingspan GreenGuard, Kooltherm, K-Roc, OPTIM-R, TEK, Thermaroof, Thermataper and the Lion Device are Registered Trademarks of the Kingspan Group plc in the UK, Ireland and other countries. All rights reserved. $\mathsf{TM}\,\mathsf{Therma}$ is a Trademark of the Kingspan Group plc. Kingspan Insulation Ltd is not associated with, and its products have not necessarily been tested by, the GREENGUARD Environmental Institute. Registered in England & Wales, No. 01882722. Registered Office: Pembridge, Leominster, Herefordshire HR6 9LA UK. VAT GB428602456.